Managing Money , Doubling Time , Half Life & Logistic Growth Formula Sheet

Simple Interest	Compounded Interest
A = P(1 + rt)	$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$
$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.72$	Compounded Continuously
	$A = Pe^{rt}$
Loan Formula $r > -nt$	
$P = PMT imes rac{\left[1 - \left(1 + rac{r}{n} ight)^{-nt} ight]}{\left(rac{r}{n} ight)}$	$PMT = \frac{P \times \left(\frac{r}{n}\right)}{\left[1 - \left(1 + \frac{r}{n}\right)^{-nt}\right]}$
Saving Plan Formula	
F nt 1	$_{A}(r)$
$A = PMT \times \frac{\left[\left(1 + \frac{r}{n}\right)^m - 1\right]}{\left(\frac{r}{n}\right)}$	$PMT = \frac{A(\overline{n})}{\left[\left(1 + \frac{r}{n}\right)^{nt} - 1\right]}$
$\left(\frac{r}{n}\right)$	$\left[\left(1+\frac{r}{n}\right) - 1\right]$
Present Value of an Annuity	The Amount of an Annuity
(r = Interest rate Compounded Continuously)	(r = Interest rate Compounded Continuously)
$P = \frac{n(PMT)}{r} \times [1 - e^{-rT}]$	$A = \frac{n(PMT)}{r} \times [e^{rT} - 1]$
Annual Percentage Yield	Annual Return
$APY = \left[\left(1 + \frac{r}{n} \right)^n - 1 \right] \times 100\%$	Annual Return $=\left(\frac{A}{P}\right)^{\frac{1}{t}}-1$
Doubling Time	Half – Life
$Q = Q_0 \cdot (1+r)^t \Leftrightarrow T_{double} = \frac{\log_{10} 2}{\log_{10} (1+r)}$	$Q = Q_0 \cdot (1-r)^t \Leftrightarrow T_{half} = \frac{\log_{10}\left(\frac{1}{2}\right)}{\log_{10}(1-r)}$
$Q = Q_0 \cdot e^{rt} \Leftrightarrow T_{double} = \frac{\ln 2}{r}$	$Q = Q_0 \cdot e^{-rt} \Leftrightarrow T_{half} = -\frac{\ln\left(\frac{1}{2}\right)}{r} = \frac{\ln 2}{r}$
Callculations with the Doubling Time	Callculations with the Half — Life Time
$oldsymbol{Q} = oldsymbol{Q}_0 \cdot oldsymbol{2}^{t/T_{double}}$	$oldsymbol{Q} = oldsymbol{Q}_0 \cdot \left(rac{1}{2} ight)^{t/T_{half}}$
Logistic Growth Rate	Logistic Function- S - Curve
Logistic Growth Rate = $r \times \left(1 - \frac{N(t)}{K}\right)$	Assuming the envioronmental conditions will not influence the carrying capacity $K(t)$.
$\frac{dN(t)}{dt} = N(t) \cdot r \times \left(1 - \frac{N(t)}{K}\right) \qquad \Rightarrow$	$\lim_{t \to \infty} N(t) = K(t) = K$ $N(t) = \frac{K}{1 + \left(\frac{K - N_0}{N_0}\right) e^{-rt}}$