Answers and Rubrics (AB)

Answers to Multiple-Choice Questions

1.	В
2.	В
3.	С
4.	А
5.	А
6.	В
7.	D
8.	D
9.	В
10.	Α
11.	Α
12.	Α
13.	D
14.	с
15.	D
16.	В

22

Rubrics for Free-Response Questions

Question	1
----------	---

Solutions		Point Allocation
(a) $\frac{dV}{dt} = \frac{1}{3}\pi 3h^2 \frac{dh}{dt} =$ At $t = 0$, $\frac{dV}{dt} = \pi (25)^2 (-4)^2 $	$= \pi h^2 \frac{dh}{dt}$ $) = -2500\pi = -7853.982 \text{ (or}$ meters per hour.	$2: \begin{cases} 1: \frac{dV}{dt} \\ 1: \text{ answer with units} \end{cases}$
(b) The absolute minine endpoint. $h'(t) = 0 \text{ when } t$ $h(t) = 25 + \int_0^t h'(t)$ $\boxed{\begin{array}{c}t\\0\\6.261\\24\end{array}}$ The minimum hei	num must be at a critical point or an = 6.261. () dx h(t) 25 16.33873 34.56246 wht is 16.339 (or 16.338) meters.	$4:\begin{cases} 1: \text{ considers } h'(t) = 0\\ 1: \text{ Fundamental Theorem}\\ \text{ of Calculus}\\ 1: \text{ absolute minimum value}\\ 1: \text{ justification} \end{cases}$
.16		
(c) $h(16) = 25 + \int_0^{16} h'(t) dt = 23.49607$ h'(16) = 1.19562 An equation for the tangent line is y = 1.196(t - 16) + 23.496. y = 25 when $t = 17.258$ (or 17.257).		$3: \begin{cases} 1: h(16) \\ 1: \text{ tangent line equation} \\ 1: \text{ answer} \end{cases}$

Solutions	Point Allocation
(a) g has a relative maximum at $x = -2$ since $g' = f$ changes sign from positive to negative at $x = -2$.	1 : answer with justification
(b) The graph of <i>g</i> is concave up for $-1 < x < 1$ and $2 < x < 3$ because $g' = f$ is increasing on those intervals.	$2: \begin{cases} 1: \text{ answer} \\ 1: \text{ reason} \end{cases}$
(c) Because g is continuous at $x = 0$, $\lim_{x \to 0} g(x) = g(0)$. $g(3) = g(0) + \int_0^3 f(x) dx$ $g(0) = g(3) - \int_0^3 f(x) dx = 7 - (5 + 3) = -1$ $\lim_{x \to 0} g(x) + 1 = 0$ and $\lim_{x \to 0} 2x = 0$. Using L'Hospital's Rule, $\lim_{x \to 0} \frac{g(x) + 1}{2x} = \lim_{x \to 0} \frac{g'(x)}{2} = \lim_{x \to 0} \frac{f(x)}{2} = \frac{f(0)}{2} = 0$	$3: \begin{cases} 1: g(0) \\ 1: L'Hospital's Rule \\ 1: answer \end{cases}$
(d) $\int_{-2}^{1} h(x) dx = \int_{-2}^{1} (3f(2x+1)+4) dx = 3\int_{-2}^{1} f(2x+1) dx + \int_{-2}^{1} 4 dx$ Let $u = 2x+1$. Then $du = 2dx$ and $3\int_{-2}^{1} f(2x+1) dx + \int_{-2}^{1} 4 dx = \frac{3}{2}\int_{-3}^{3} f(u) du + 12$ $= \frac{3}{2}(5-4+5+3)+12 = 25.5$	3 : 2 : Fundamental Theorem of Calculus 1 : answer

Question 2